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ABSTRACT

This document provides the guidelines, limitations, and modifications
required to perform a structural, fracture analysis using Griffith-Irwin
fracture mechanics principles, It serves as an introduction to fracture
mechanics for those personnel who are concerned with fracture strength esti-
mates for aerospace structural applications. 1Illustrations and hypothetical
examples are included which show how engineering solutions for critical crack
size and fracture stress may be made. The critical stress intensity (fracture
toughness) concept is used as a basic factor for the fracture analysis of
materials, For most crack situations, a stress intensity factor can be com-
puted which can be related to critical conditions and estimates made of criti-
cal crack lengths, stresses, and crack propagation behaviors. To provide a
complete and accurate fracture analysis, the user is encouraged to become
familjar with all aspects of the analysis and its limitations.

This document has been approved for public release and sale; its
distribution is unlimited.
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I INTRODUCTION

This report contains guidelines by which fracture mechanics principles
may be used in the analysis of the fracture strength of aircraft structures.
It serves as an introduction to the use of this discipline in structural,
fracture analysis. The data contained herein is not all inclusive, but supple-
mentary to other information available in the field of fracture mechanics.

Fracture mechanics has been employed to evaluate material fracture behav-
ior with a good degree of success. If materials can be ranked by their criti-
cal stress intensity factor (K.ritical)s the basic unit of fracture mechanics,
then this unit can by applied to the analysis of aerospace structure. Such a
critical parameter has been determined for thick section fracture and provides
the proper trends in determination of critical fracture stress for plane strain
behavior.

Thus, a critical K can be used in fracture analysis--provided the limita-
tions of fracture mechanics are fully understood., It is the purpose of this
report to show how fracture mechanics can be used during the vehicle design
stages for fracture stress and critical crack length estimations as well as
optimum materials selection. To provide a basis for the use of the stress in-
tensity factor in analysis, it is necessary to review its historical evolution,
derivation, terminology, and relationship to accepted design philosophies.

This is reviewed in Sections II through V. 1In many structural applications
plasticity is not limited and geometric effects predominate, These parameters
must be accounted for and lead to modified solutions to the critical K concept
(Sections VI and VII). Of necessity, other influencing factors may become
dominant, such as environmental effects and require additional modification of
the basic critical K concept (Section XI).

With these basic concepts as background, and knowledge of the limitations
of fracture mechanics which require modification to these concepts, it is then
possible to compare and analyze typical structural fracture problems. These
solutions are presented in Sections VIII and IX and are obtained from the
following basic premise that there is a K solution for the crack problem of in-
terest which can approach critical conditions. Following this premise, it is
then possible to make engineering estimates and recommendations based on frac-
ture mechanics analysis of structure which may become cracked by any means dur-
ing its development or service lifetime., The accuracy of these estimates is
dependent on the choice of critical stress intensity factor.

It is the purpose of this report to make the user of fracture mechanics
analysis aware of the basic concepts, limitations, and usage in design., This
can only be accomplished in a step-by-step review of all sections of this
document., In this manner, the user will become familiar with, and proficient
in, the use of fracture mechanics analysis.,




IT HISTORY OF FRACTURE MECHANICS

To understand the motivating force behind the rapid rise of this new
discipline, one must go back to the large number of fracture problems which
have occurred over the years. In 1919, a 2-million gallon hot molasses tank
failed at a rivet line with complete disaster. Recently, another such tank
fractured, resulting in an estimated clean-up requiring 2-3 weeks,

Fracture mechanics, from its unimpressive beginning with an English
scientist studying the failure mechanisms in glass, to its present employment
in analyzing rocket motor, tankage structure, and aircraft primary structure,
has come a long way. During the war and post-war era, the Liberty Ship inci-
dents which saw 1450 welded plate failures, 19 of which were total ship losses,
were a prime motivation in extending the theory of fracture cf brittle solids
to more realistic structural materials, Thus, the theory of Griffith, the
English scientist, was modified and updated to account for semi-ductile behavior.
There have been other fracture problems, of course, such as rashes of steam
generator turbine and motor failures, Polaris motor cases, the 260-inch solid
rocket engine case, to name a few, which also helped to establish fracture
mechanics as an analysis method, as well as a material evaluation parameter.
The cost of replacement, loss of hardware, etc., have dictated the necessity of
utilizing the tools of fracture mechanics. This fact is even more important
now as the use of higher strength steels, titanium alloys, and exotic materials
become more evident in high speed structures,

II1.1 THE GRIFFITH/IRWIN ERA

The first in-depth research of sharp-crack fracture was performed by
A. A. Griffith(l) of the Royal Aircraft Establishment, England. In 1920 he
published his results on the effect of surface scratches on the mechanical
strength of solids. His work was truly the initial step in the foundation of
fracture science. Working with brittle material (glass), Griffith postulated
that an existing crack or flaw will propagate if the total system energy is
lowered in the presence of a crack or flaw. Therefore, Griffith provided a
means of estimating the theoretical strength of solids and gave the correct
relationship between fracture strength and defect size for brittle material.

Based on G. R, Irwin's research at the Naval Research Laboratory, the
Griffith theory of fracture was ultimately shown to be not only strain and
surface energy dependent, as shown by Griffith, but also highly dependent on
the work of plastic deformation(2), "This led to the conclusion, supported
independently by E, Orowan(3), that for relatively ductile materials the work
of plastic deformation is much larger than that of surface tension for engineer-
ing materials. Subsequent papers by Irwin indicated that the energy approach
to fracture is equivalent to a critical stress distribution., From this he
developed the concept of fracture toughness.

A quantative relationshop could now be placed on the fracture process
which included the dimensions of the crack or flaw, the nominal stress field
near the crack, and a property of the material which governed the energy
balance of the material in the presence of a crack under stress or the so-
called fracture toughness. Thus, for the first time, a characterization of



the fracture process for materials of limited ductility was available to the
stress engineer and a new method of analysis was developed called fracture
mechanics.,

The Griffith/Irwin fracture mechanics approach involves an energy
balance; that is, the energy required for crack growth and available system
energy (stored elastic energy released by the material when the crack grows).
When the energy from the elastically strained material surrounding the crack
is equal to or exceeds the energy required to support crack growth, crack
extension will occur without additional increase in load or stored elastic
energy. Griffith's research in brittle glass(l) indicated that for a homo-
geneous, isotropic material containing a crack of length 2a, having a thick-
ness B undergoing a uniform tensile stress perpendicular to the crack, the
crack would extend an incremental distance (da) on either end. The energy
required for this incremental crack extension, which created new fracture
surfaces 2B da, was the energy required to overcome the solid state surface
tension of the material, Ugyrface. (Due to symmetry, only one half of the
crack is being analyzed.)

dw =U * 2B da ¥
req. surface

Thus, the surface energy required per incremental crack extension is

dw dw
req. req.

L . =
B da - dA - 2Usurface (11-1)

where 1 or éx is the crack surface area. Therefore, Griffith indicated that
the surface energy is a constant for brittle material.

Griffith then showed that the energy available (dWayaij,) from the re-
lease of stored elastic energy as the crack grew was

dwavail. = (Stored Elastic Energy)x(Affected Volume)
or
dw ; = ! o . [2 7 Ba da]
avail, 2

This equation, written in the form of energy available per incremental crack
extension, is

1 dwavail. _ dwavail. _ ”“Tza
B da dA =T E (11-2)

where E is the elastic modulus of the material. Griffith then formulated the
critical energy balance equation which states

dw X =
avail. 2Usurface

or from Eqs. II-1 and II-2

dw , dw
1 avall.) = 1 req.
B da B da

*The symbol B in fracture mechanics is standard terminology for thickness.
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and TTo Za

= — I1I-3
Usurface E ( )
or written in the familiar Griffith form, equation II-3 is
25 Usurface
= e —— II-
(Tcritical mTa ( 4)

for the critical energy case.

O .ritical is the critical stress for unstable crack propagation (usually
written (Tc). The concept stated by equation II-4 is that the critical
stress is inversely proportional to the square root of the crack length and
directly proportional to the square root of the surface tension. This equa-
tion forms the basis for most of the modern theories of fracture of solids,

Orowan in the-early 1950's and Irwin, during the same period, showed the
influence of local plastic deformation near the crack tip on the fracture
control process. Orowan(3) stated that for local plasticity, the work of
plastic deformation can be treated in a manner similar to Griffith's. He
also postulated that if the region of crack tip plasticity was dimensionally
small compared to other body dimensions, elastic-stress analysis could be
used successfully. Thus, Orowan's modified Griffith equation accounting for

plasticity effects was
o _‘\/ZE (Usurface ¢ Uplastic)

C_ mTa

(11-5)

Orowan also estimated that the work or energy of plastic deformation (Uplastic)

was 1000 times as large as Ugyrface; therefore, the latter term could be neglected

in the analysis of materials of slight ductility. In this case, equation II-5
becomes

22U
o ~ E astic

&

c mTa
or
U 770'c2a
plastic = 5 (11-6)

This analysis, independently supported by the work of G. R. Irwin, was
the first recognition of the role of plasticity in fracture.

It became apparent with additional research by Irwin(2) and his asso-
ciates, that the energy of plastic deformation (Upjastjc) was not, however,
a constant, but a variable dependent on length of crack; i.e., the larger the
crack the greater the plastic energy. To illustrate this finding, refer to
Figure 1. A crack of original half length a, under increasing load will
grow slowly and shows an increase in plastic energy dissipation, 2Uplastic
(dashed curve). The shape of this curve will be dependent on specimen
geometry (width, thickness, etc.) and crack speed. During the rising portion
of the plastic energy dissipation curve (crack growth resistance, or R curve
is the now accepted terminology), resistance to crack growth occurs with
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increased plastic deformation. Additional input energy is required (inc?ease
in external load) until the point of tangency of the R curve and the avail-
able energy curve is reached (see point A, Figure 1 ). At this point, un-
stable crack growth occurs, i.e., the energy available for crack extension is
greater than the dissipated plastic energy. Therefore, the crack growth
process is now unlimited with no further increase in load (input energ¥) for
crack extension, and the crack grows catastrophically. One can visualize
this process by mentally walking up the R curve. Extra energy is néeded to
get up the hill, but once the crest is reached (point A) momentum will pre-
vail and less effort is required to proceed.

Point D and its associated resistance curve represents typical behavior of
an ideal, brittle material. It will be noted that negligible crack extension
occurs prior to instability.

As shown by Irwin, the energy available per crack extension is really
the elastic strain-energy release rate ()X7) associated with increasing load.
Thus, at the point of tangency, (A, Figure 1 ) the following conditions

prevail:
R=0b =&

ritical

and

o @

dR ~ da

From these relationships, it follows

)Z5critica1 - 2Uplastic f(a)

or from Eq. II-6 9
a

__TOc¢ "¢
,&c = — (11-7)

A quantative relationship between critical half crack size (ac), stress
(0¢), and fracture toughness is shown by equation II-7. The fracture
toughness is represented by the critical material strain-energy release rate
(L7.). This equation indicates material fracture behavior on a gross scale.
The control of fracture toughness will not be a constant, but dependent on
crack length, (a). To date, an analytical means is not available to deter-
mine the plastic work associated with the Griffith/Irwin instability equation.
However, the problem was solved experimentally by Irwin and his co-workers.

The parameters needed to determine a critical strain-energy release rate in
equation II-7 are the load and crack length associated with critical crack
extension, The load, and hence, critical stress can be determined directly
from any universal testing machine. The question remained:how could the assoc-
iated critical crac%4}ength (ac or 2a.) be determined accurately? This problem
was solved by Irwin‘"/using an ink stain technique, Using a centrally slotted
panel, he placed a small quantity of staining ink at the notch roots. The
specimen was then uniaxially loaded perpendicular to the slot. During the
rising portion of the R curve (see Figure 1), the ink could slowly follow the
crack extension by capillary action. Once the critical point of crack exten-
sion was reached, the ink could not keep up with the rapidly advancing crack;



therefore, an indication of critical crack length would be outlined by the
distance the ink, traveled during slow crack extension. However, consistent
calculations of)t% could not be made. The ink stain method, due to interpre-
tation and experimental difficulties, has since been replaced by more sophis-
ticated techniques, which will be discussed later in this report,

Thus, for the past 50 years, fracture research has shown the evolution

of "a new discipline termed 'fracture mechanics', which provides a rational
basis for analysis and control of flaw related fracturing of structures."(6)

I1.2 ASTM TASK FORCE

In 1958, the Department of Defense initiated a study effort within the
American Society for Testing and Materials (ASTM) motivated by several frac-
ture problems in rocket propellent tanks. As the result of this contact, a
special ASTM committee was established on Fracture Testing of High-Strength
Sheet Materials.(3) The importance of the structures fracture problem can
be seen by the appointment of 6 representatives from the aerospace industry
and government to this special 10-man committee. Much will be said later in
this report about the contributions of this committee to the standardization
of fracture testing methods, terminology, and analysis.

The relationship of the analysis by fracture mechanics of aircraft and
aerospace structures in preventing fracture in areas which must be fracture
or damage tolerant will become evident during the development of this report,

I1.3 SPECIMENS

One condition which must prevail in order to determine a yglid fracture
toughness value is that limited plasticity accompany the fracture process. It
will be recalled that the solution of Griffith, Orowan, and Irwin are based on
linear elastic approximations; therefore, the crack tip plasticity must be
confined to a small zone compared to other specimen dimensions., For this
reason, many different specimen designs have been introduced and evaluated
since the first fracture toughness specimen. As more specimen types were
introduced (notched rounds, edge notch, etc.), it became obvious that stan-
dardization of test specimens and methods was required to provide valid frac-
ture toughness measurements, The efforts of experimentalists and analysts
within The American Society for Testing and Materials have been instrumental
in evaluating these design and test methods, The primary contributors to this
effort have been associated with the Naval Research Laboratory (G. R. Irwin,
J. M. Krafft, A. M, Sullivan, J. A, Kies, R. W. Boyle, and their co-workers)
and NASA Lewis Research Center (J. E., Srawley and W. F. Brown, Jr., and their
co-workers;. (See, for example, Ref., 7 and 8.) Illustration of the various
test specimens in use today will be shown later in Section XII of this report.




III DESIGN PHILOSOPHIES

Fatigue or structural damage can be expected during the operational life
of aircraft or spacecraft structures., To account for this in modern aerospace
vehicle structural design, two philosophies are frequently considered to ensure
attainment of a satisfactory operational life., One of these is the "fail safe"
philosophy, which is also associated with the damage tolerant concept. The
other is the "safe life" concept, which is really a given life or specified
lifetime philosophy. In the following, these two philosophies will be further
defined and their applications explored.

ITI.1 FAIL SAFE

The fail safe concept has been applied to everything from electronic
hardware to load-carrying structure in aircraft systems. In structural design,
its philosophy states that during the service life of a structure, fatigue
cracks or damage will not progress to a catastrophic condition prior to detec-
tion during regular inspection periods. Therefore, the fail safe philosophy
assumes that readily detectable damage due to fatigue or accidental occurrence
will remain in a somewhat stable condition upon subsequent service load his-
tory. In aircraft, this concept covers all of the primary structure, so that
loss of one conponent does not reduce the total strength of an assembly to
dangerous levels, Most of these components consist of two or more separate
segments constructed in a manner that a crack can propagate completely through
one section without propagating into a second area; or perhaps a structure is
designed or materials selected to take advantage of slower crack growth rates,
thus effectively increasing the probability of crack detection during inspec-
tion.

FAA certification for transport aircraft neccessitates the fail safe con-
cept and dictates that particular structural areas be analyzed and tested to
meet fail safe requirements, In commercial design, concern is for the unde-
tected crack, or puncture removing a structural panel between stringers or
frames. It also applies to the fatigue or damage of frames and stringers,
However, this concept cannot be overlooked in military aircraft, either. 1In
military aircraft, similar damage can be caused by projectiles or shrapnel,
and fail safe concepts apply.

The fail safe or damage tolerant philosophy often utilizes stringers as
built-in crack or tear stoppers. Tear straps are now an integral part of al-
most all new commercial designs. The function of these straps as crack stop-
pers will be discussed further in other sections of this report, Using exist-
ing fracture mechanics principles, a fail safe analysis can be made in which
critical stresses can be determined for planned designs. Because the ultimate
substantiation of these assemblies requires proof testing, a good comparison
can be made with the fracture analysis. However, no indication is usually pro-
vided as to structural fatigue resistance. Improvements in design are usually
made by varying testing parameters and relying on fracture mechanics principles
for estimating fail safe stresses.,



III.2 SAFE LIFE

The safe life concept assumes that a given structure will not develop
fatigue cracks during its service life. Once cracks do occur in the safe life
structure, its life is assumed complete.

It is the aim of this concept that during the design phase, materials,
stress raisers, and other fatigue-effecting parameters be thoroughly considered
to prevent the development of catastrophic cracks under service loading condi-
tions. To achieve this goal, fatigue-sensitive structure is subjected to simu-
lated service testing during the aircraft development stage. Thus, a conserva-
tive or realistic test program provides an estimate of service life and esta-
blishes inspection and maintenance schedules.

It can be seen that in many cases this concept can lead to costly retro-
fitting when thoroughly analyzed safe life structure develops fatigue damage
during a testing phase. It is quite possible that this may take place some
time after production items have been delivered. Problems also arise when
service loads are not accurately simulated, or a particular design is pressed
into a different service load history than that for which it had been safe
life designed.

Thus, the principles of safe life design depends on a fairly accurate
estimate of service loading, usually involving a random spectrum. All designs
must then be analyzed for fatigue, keeping in mind the starting points for
damage such as stress raisers (welds, cutouts, rivet holes, notches, etc.),
and the material selection should be optimized for suppression of fatigue.

It can now be seen that both philosophies of structural design have cer-
tain limitations. However, both concepts can and should be used in aircraft
design to provide the optimum "safe'" structure with fracture mechanics as an
analysis tool and proof testing as a back-up requirement for critical structure.



IV PLANE STRAIN VS. PLANE STRESS IN FRACTURE ANALYSIS

IV,1 "ELASTIC OR BRITTLE" FRACTURE

The terms brittle or elastic fracture, in general, refer to an elasti-
cally stressed body, excluding that region surrounding the crack as the crack
grows during the tearing process. Through the terms plane strain and stress,
we can tie together the fracture process with fracture mechanics.

IV.2 PLANE STRAIN

In a cracked body, a zone of plasticity (see Section VI) occurs at the
crack tip during increase of a remotely applied force, In a thick body, this
plastic action is suppressed by interior constraint due to thickness. This
is analogous to the definition of plane strain as given in Reference 9; that
is, if the z dimension of a stressed body (thickness) is large, then all z
direction strains and displacements are zero, This definition could well
describe the behavior of a thick section fracture, except for that region
near where the crack meets the free surface faces. In that region the z
direction strains and displacements are not zero, and lead to the development
of shear deformation or "shear lips" near the free surfaces, Therefore, in
a thick section, plane strain conditions are governed by the material thick-
ness.

One may visualize an analogous situation with a common tensile test.
Shown in Figure 2a is a representative fracture for a material of limited
ductility, elastic, except for the region surrounding the fracture. A negli-
gible amount of local plasticity occurs, though the thickness and fracture
occurs as indicated by the load deformation curve.

IV.3 PLANE STRESS

In a thin, cracked body subjected to in-plane loads, there is essentially
no constraint in the z (thickness) direction (3-dimensional strain state), and
plane stress conditions prevail. This lack of constraint is contrasted with
the plane strain condition and leads to relatively large plane stress yield
zones which are on the order of the material thickness itself,

Using the tensile test analogy once again, Figure 2b indicates a fracture
in a ductile material which is elastic, except for the fracture region. Gross
cross section deformation has taken place and typical shear failure predomi-
nates. At this point it must be realized that the tensile test analogy of
Figure 2 is for illustrative purposes only and does not depict plane strain or
stress (fracture mechanics) behavior.

The material thickness enters into the modes of failure and is the con-
trolling factor. Thus, for a given material, plane strain, plane stress, or
mixtures of the two can be encountered by changing the material thickness, and,
therefore, the amount of plastic constraint., Examples of the usual fracture
appearance of a material with plane strain, plane stress, and mixed mode type
failures are shown in Figure 3,

*The general cross-sectional shape is material and thickness dependent.
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PLANE STRESS (SLANT) FRACTURE
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FIGURE 3, THROUGH-THE-THICKNESS VIEWS OF PLANE STRESS
& PLANE STRAIN & MIXED MODE FRACTURES
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A familiar residual strength diagram is shown in Figure 4., These frac-
ture envelopes would be representative of an aluminum alloy containing central
cracks which were small compared to specimen width. For long cracks, plane
strain behavior predominates where the nominal stress is small compared to
the material yield, and thickness is sufficient to suppress gross crack tip
plastic action. 1In this region, the fracture criterion follows that proposed
by Griffith (see Eq. II-4). As the crack length or thickness decreases, a
region of mixed mode failure (plane stress and plane strain) predominates due
to increased plastic deformation until a condition of plane stress predomi-
nates, The elastic based theory of fracture must then be modified to account
for increased plastic action.

IV.4 FRACTURE APPEARANCE

A post mortem investigation of a fracture face can tell much about the
nature of the stress state, as well as identify the possible failure mechan-
isms. In fatigue, the appearance of the fracture surface can provide clues
to the investigator as to the prior stress history. In fracture, a macro-
scopic view of the fracture surface can supply information as to the prior
state of stress also. In this way, a decision can then be made as to the
type of fracture analysis which is applicable--plane stress or plane strain.
If a through-the-thickness crack has developed, the preference for crack
progression during fracture can be associated with the plane stress, plane
strain, or mixed mode regions of Figure 4, as shown with representative
fracture surfaces of each region. Therefore, fractures under plane stress
conditions usually lead to through-the-thickness, 45-degree, slant or V-slant
cross sections., The development of the slant fractures at the fracture faces
are referred to as "shear lips'" and provide one of the many indications as
to the validity of plane strain fracture toughness tests. The significance
of the shear lip development will be discussed in Section VI of this report
in more detail.

The square appearance of flat fracture indicative of plane strain frac-
ture is also shown in Figure 4. 1In this case, plastic deformation (through-
the-thickness) at the crack tip is minimized and shear lip development negli-
gible. It is within this region that fracture mechanics works with a high
degree of confidence, because the equations of fracture are based on elastic
analysis.

The plane stress and mixed mode regions, although under intensive study,
require modification to the elastic-analysis based theory in order to use
fracture mechanics effectively., At the present time, it is these modifications,
many of which are empirically based, which produce the greatest limitations
on the use of fracture mechanics in design of aircraft structures. However,
the basic concepts are sound, and, through an understanding of the limitations
of fracture mechanics, a working knowledge of the extension of the analysis to
more ductile behavior can be used with confidence.

With this background in theory, history, and basic failure modes of frac-
ture, we can now approach the analysis of the stress state in the presence of
cracks and then a major concept of fracture mechanics--the stress intensity
factor.
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V LINEAR ELASTIC STRESS ANALYSIS OF CRACKED PLATES

Through the use of linear elasticity, information can be gained as to
the effect of cracks on the stress distribution of an essentially elastic
solid. Griffith(l) made use of the Inglis stress solution 10) for an ellip-
tical hole in a uniform tension field. He then degenerated the elliptical
hole into a crack solution on which his energy rate theory is based.
sneddon{11) in 1946 gave the first solution for stress field expansion near
the crack tip. However, it was not until ten years later that Irwin(12) and
M. L. Williams 13) observed the general applicability of these solutions and
provided the extensions which made it possible to apply them to a cracked
isotropic elastic body.

V.l MODES OF CRACK SURFACE DISPLACEMENT

In fracture mechanics, three displacement modes of the crack surfaces are
considered. These modes are shown in Figure 5. 1Indicated are the opening
(1), sliding (II), and tearing modes (III). The sliding mode may also be
referred to as the edge-sliding mode. It can be seen from Figure 5 that any
crack loading problem could be solved by including combinations of two or
three modes for various loading situations.

V.2 STRESS INTENSITY FACTOR

Since the crack surfaces are stress free boundaries, that portion near
the tip of the crack predominantly influences the local stress field. There-
fore, remote forces and boundaries only affect the intensity of this local
stress field. This intensity is defined as the crack tip stress intensity
factor, Ky, which will be developed in succeeding paragraphs.¥*

Consider the opening mode (I) crack displacement of Figure 5. Near the
leading edge of the crack, the free body diagram would appear as shown in
Figure 6. The stress and displacement field can be analyzed as a plane strain
(extensional) problem in elasticity. Irwin(lz), using the method of Wester-
gaard(lh), analyzed this problem and indicated the following stress fields
and displacements for Mode I at a distance, r, close to the crack tip.

Stress Equations (Mode I)

KI 6 0 397
g = S=————dog = 1l - sin — sin —
J2Tr 2 2 2
Ky o [ ) 30
O = ——————oo cos — 1 + sin — sin — el it e s e (I
Yy Jiwr 2 2 2
K; 0 0 36
" = —————— sin — cos — cos —
y 27T 2 2 2

*A physical interpretation of the stress intensity factor is a parameter which
reflects the redistribution of stress in an elastic body due to the introduc-
tion of a crack and which reflects mode and magnitude of force transmission

through the tip region.
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OPENING MODE 1

SLIDING MODE II

TEARING MODE III

FIGURE 5. MODES OF CRACK SURFACE DISPLAGCEMENT



FIGURE 6. COORDINATES AND STRESS COMPONENTS OF CRACK TIP FIELD
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Xz yz
o, = 0 for plane stress conditions
or 0; = V((Tx - (Ty) for plane strain conditions
and Ez =0

Displacement Equations (Mode 1)

Ky r 6 29”
u=— — oS = l - 2V 4+ sin -
G 2T 2 2
. - ol o B e s ACVI=98)
Ry r 6 2 6
vV = — —_— SifN — 2 - 2V - cos -
G 2T 2 2

0 for plane strain conditions.

and w

V.3 THE WESTERGAARD METHOD (STRESS)

One of the several methods of analyzing cracked plates to obtain stress
intensity solutions will be presented here. As mentioned previously, there
are several methods available, and a good review is contained in Reference 15.
The Westergaard method will be summarized for Mode I cracks of geometry simi-
lar to Figure 7, Using the Westergaard method, K can be computed from the
(Westergaard) stress function Z. Obtaining the stress function involves
guessing for any particular configuration; however, for those well versed in
elasticity, it is not difficult. For the Griffith crack configuration of
Figure 7, with the coordinates of Figure 6 and elastic material, the plane
extension, elastic equilibrium equations are given as:

(oK 0Txy _ "
0x ay
aTx o0

¥4 Y= SR N R -
o + ay =0 (v-3)
Txy = Tyx

and the strain/displacement relationships and Hookean conditions lead to the
compatibility equation,
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vio +0)= 2, 2 (0. + 0. ) =0 (V-4)
X y 3x2 3y2 x y -

By defining an Airy stress function, ¢, the equilibrium equations V-3
are satisfied in terms of stresses

o = azé
2
2
O'azag >ooooonoooono(v-5)
y ox
_ 2%
< aXBYJ
Substitute equations V-5 into V-4
vie = v? (vie) =0 (V-6)

To solve the crack problem, the stress function, ® , must satisfy
equation V-6 and its boundary conditions. The stress function, ®, is chosen
as,

d = ¢1+x¢2+yv3 (v-7)

which will satisfy equation V-6 if ¥'s are each harmonic, :l.e.,'V2 i = 0.

Define a complex variable z as z = x + iy and then functions of this
variable will be Z(z), and its derivatives are

s dZ

Z =

dz

dz L ] L ] L ] L ] L] L] [ ] L] [ ] L] [ ] [ ] L]
2= iz (v-8)

dz

2= <=

dz

which have harmonic real and imaginary parts if the function is analytic,
i.e., Z = Real Z + 1 Imaginary Z., Hence,

v2(Re 2) = V&(Im 3) = 0 (V-9)
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This solution is the result of Cauchy-Riemann conditions which specify,

& Re Z - 8 Im 2
0 X oy

= Re Z

< Fanuhow @A (10D
dIm 2 __ 9 Re Z
9 x dy

By using equations V-10, the functions Z through Z can be differentiated.

v.3(a) Mode 1
. . e (14)
It is convenient to use a specific form of the Westergaard stress
function for Mode I cracks. Westergaard defined an Airy stress function, &

® = Re il +y Im ZI (V-11)

where 71 and 71 are related through equations V-8, (This is true for the
Mode I crack except at singular points, i.e., at concentrated load points.)
Using equation V-10 to differentiate equation V-1l to form the stresses
according to equations V-5, we have,

o Re 2, =y Im 2"

X 3§ I

1 Ay TG IR e 6 G ier for () U3 Bl ehiee =)
y Re Z; +y Im Z; (V-12)

Q
]

Py 1
Txy y Re ZI

At this point in the analysis, any function Z (z), which is analytic will
give stresses, by equations V-12, which automatically satisfy the equations
of elasticity. It only remains to find those functions of Z (z) which will
solve the crack problems, and satisfy boundary conditionms.

Near the crack tip the stress free crack surfaces are the boundaries
which dictate Z (z). With the coordinates taken at the right hand end of a
crack parallel to the x-axis, Z has the form

Z =

.f_(ﬁl (V-l3)
z

G

where ‘sz) is a well-behaved function and approaches a real constant at the
origin. This results in T xy and Uy approaching zero at_the crack surfaces
because the surfaces are stress free. The character of (z) away from the

crack tip is then unspecified and can be adjusted to solve many Mode I crack
configurations (symmetrical extension).

21




Close to the crack tip region, or when |Z| —0, f.(z) may be replaced
by a real constant Ky, and equation V-13 becomes

K
z . (V-14)

lzl—0 2Tz

The constant Ky may be thought of as representing the constant term in
the series of the MacLaurin expansion of f (z). By taking polar coordinates
at the origin (see Figure 6)

z=1e (v-15)

and using equations V-14 and V-15, the stresses can be computec according to
equations V-12 as

Ky 0 g . 3¢
oy = T cos = 1 - sin — sin ——J
27Tr 2 { 2 2
KI 0 [ 6 36 ]
g. = —=——cos = |l +sin—=sin — | /> ¢t (v-16)
Y Jimr 2 il 2 2
e B g S0
Ty = ——— sin = cos = cos —
y 27T 2 ) 2

which are the "exact" elastic crack tip stress field equations as r — 0, and
in that general vicinity (see also equations V-1). Equations V-16 neglect
only the higher order terms in .r (beyond the constant terms in MacLaurin's
expansion of f(z) ). The factor Ky is called the crack tip stress intensity
factor and has a constant value in the vicinity of the crack tip through the
unspecified character of jr(z). K; is seen to depend on the mode of loading.

V.4 THE WESTERGAARD METHOD (DISPLACEMENT)

The y direction strain, by Hooke's law, is

15} o
o =i e i o N
By = By 3 E(f’x+ 2) (v-17)

For plane strain (€ 5 0) conditions, Hooke's law states

o, = v(0'x+ 0’y) (v-18)

Substituting equations V-12 and V-18 into equation V-17, and integrating,
gives

o L =
v =z [2(1 -v) Im ZI-— y Re ZI] (v-19)
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and

1+ v ' =
E e— -2V — o3
4 g [(1 2V) Re 2 = y In ZI] (V-20)

Noting that E = 2G(L + v ) and substituting equation V-14 in its polar form
into the general displacement equations V-19 and V-20, u and v become,

= KI JF‘——‘T 0 . 20
u=— /r/2m cos — |1 =2V + sin” =
G 2 | 2 |
.. (V-21)
K =
v=-—I- vr/2n sing !’2—- 2V—cos22
g % 2 |

and w = 0 for plane strain conditions. Equations V-16 and V-21 are the same
as the stress and displacement solutions for Mode I through cracks developed
by Irwin(12 using the Westergaard (stress) method (see equations V-1 and
V-2, Similar solutions can be obtained for Modes II and III, and are given
in Ref. 15.

It must be remembered that this is by no means the only method to obtain
stress solutions for crack problems. However, it presents one of the simplest
means to analyze cracks.

This two dimensional analysis of Mode I cracks indicates that the magni-
tude or intensity of this distribution is dependent on Kj. Thus, the rela-
tive intensity of the stress field at any point, obtained by basic stress
analysis of the crack tip region, is the crack tip stress intensity factor,
K.*

V.5 DIMENSIONAL CONSIDERATIONS

It now becomes necessary to discuss the influence of crack size, geometry,
or applied load on the overall fracture problem. Consider the geometry and
stress conditions of Figure 7. A crack of half length "a" under a uniform
gross tensile stress, 0 , is introduced into an infinite plate. Mode I dis-
placement is evident, and two parameters are known, o , and "a". Due to
crack symmetry, only one crack ti% stress intensity need by considered. Using
dimensional analysis, P, C. Paris 16) solved this problem through the use of
equations V-1 and found

* When the subscript I does not accompany the stress intensity factor, open-
ing mode is assumed., The units are normally ksi ,/inch, but may be seen
as lbs-inches-3/2,
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KI = Const. 0,/a

where = =
KII KIII 0

Similarly, Modes II and III may be analyzed by dimensional analysis.

KII = Const. T, a

Mode II« + + « o « o . (v-23)
where KI = KIII =0
for uniform in-plane shear, and
= T
KIII Const, T /a
+ *Mode IIL « ¢ » ¢ + + - (V-24)
where KI = KII =0

for out-of-plane shear at infinity,

The value of the constant (Const.) is found as,/ 7T for all three modes,
Therefore, the stress intensity factors for an infinite plate with the crack
geometry of Figure 7 are

= 0
KI Ta

= ioae dep bl w0 G S G w e g e s (V=25
Kiy T/ Ta ( )

KIII = T Ta
using both dimensional and elastic stress solutions,

The stresses in linear elasticity depend linearly upon applied load,
hence Equations V-16 imply that the stress intensity factors contain load as a
linear factor., Dimensional examination of the same equations show that K
must also contain a characteristic length parameter (lineal dimension, etc.)
for a particular body configuration, including crack length, In the Griffith
crack configuration (see Section II) the only characteristic length is, a,
the crack length. The similarity between Equations V-25 and the Griffith
energy criteria for crack stability (see Equation II-7) indicate that instability
occur at a constant value of K,

There are many other means of determining stress intensity factors (i.e.,
complex stress functions, numerical collocation, inner-outer expansion) which
will not be included here, but lead to the same dependency on crack length and
stress as eqs. V-25, An excellent summary of stress intensity factor solutions
is contained in Reference 15.
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V.6 STRESS INTENSITY - STRESS CONCENTRATION

Similar terms and symbols--dissimilar parameters but, the stress inten-
sity factor (K) may be obtained as a limiting case of the stress concentration
factor (K¢), i.e., when the notch radius, p , approaches zero.

For a crack of finite tip radius, p , the surrounding stress state is
governed by the stress intensity factor. A proportionality then exists be-
tween Ky and O, where Op is the maximum stress near the crack tip due to
the presence of the stress raiser (crack). In order to make this propor-

tionality dimensionally correct, the notch radius must be introduced; hence,
the complete solution is:

KI = Const, 0‘n,/p (v-26)

It can be recognized that this stress intensity solution is the same as that

for a Mode I crack (see equations V-25) where "a" is replaced by the charac-

teristic crack tip or notch radius, P . The K¢ for an elliptical notch

(half crack conditions) can be used as the limiting case for a crack, or when
the ellipse collapses, i.e., flattened and approaches a crack shape.

g
Kt(for elliptical notch) = —Z =1+ 2/% J (v-27)
g

Solving equation V-27 for O, and substituting into the equated Ky solutions
of equations V-26 and V-25, when P approaches zero (crack situation), equa-

tion V-26 becomes .
_ lim J;- P
Xt~ pieo On N (V-28)

and the constant (Const.) is found to be iﬁi for P = 0. By this procedure,
the stress concentration analysis may be lsed to determine Ky mode stress
intensities for various shaped flaws in finite structure as long as the stress
concentration factors are available in a form similar to Equation V-27.

Another 1nt3;gsting feature of this analysis is that the constant (Const.)
was found to be gﬂ . This factor, when combined with the finite width correc-
tion (usually sigfMified by the symbol Y*) is dependent on both specimen and
crack geometry. The finite geometry corrections will be discussed later for
various crack geometries.

V.7 THE RELATIONSHIP BETWEEN STRAIN ENERGY RELEASE RATE (A%) AND STRESS
INTENSITY

It can be observed that the relationship between strain energy release
rate (&) and stress intensity (K) as given by Equations II-7 and V-25 are
quite similar, Both are measures of the elastic stress field effects near
the crack tip, It has been shown(15) that the relationship for displacement
Modes I, II, and III is

*The correction factor (Y) usually includes the NT  term in its calcu-
lation. In this report, (A) will be used to denote finite width correction
which does not include the Jm .
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(1 -V 2 .
/£7I = 3 KI (Plane Strain)
2
(L -V %) 2 .
= e 2L K__" (Plane Strain) ) ¢ ¢ ¢ ¢ « ¢« v 4 o . V-29
1&711 3 Kiq (Plane Strain) ( )

P

I E

G-
11

where V and E are Poisson's ratio and modulus of elasticity, respectively.
Although most of the modern terminology of fracture mechanics uses the stress
intensity terminology, the relationships of equations V-29 and V-30 can be
used to convert strain energy release rate data to K values directly.

(Plane Stress)\ . ........ (v-30)

V.8 SUPERPOSITION OF K SOLUTIONS

In many cases for complicated loading problems, it may be expedient to
add the stress intensity solutions in Mode I only, to solve for a combined
loading problem., For example, in linear elasticity the effects of two or
more loads may be superimposed by adding stresses and displacements (not
energy) at each point. In fracture mechanics, a problem may arise such as
shown in Figure 8, which might represent a crack in a structure under uni-
axial stress with superimposed compressive rivet forces.* The stress inten-

sity factor for the total problem is then the algebraic summation of the two
simpler problems.

Superposition principles also apply to the geometric corrections ( A's)
and the principles involved will be developed in later sections of this
report.,

V.9 CRITICAL K CONCEPT

The stress equations of eq. V-1 indicate that the stress conditions near
the crack tip are of similar distributions (1/Nf?—) and vary only in stress
intensity from one case to another., Therefore, it follows that unstable
crack extension will take place when the stress intensity factor, Ky, reaches
a value which is critical, that is when any combination of load, crack geometry,
and configuration becomes critical., This situation occurs when K; approaches
Kyo, where the subscript (c) denotes a critical value in fracture mechanics
terminology. This critical value,Ky.,is the plane strain fracture toughness.
For plane stress fracture, the symbol K. is used.

*Since Mode II and III distribution are entirely different from Mode I, K
factors cannot be added for different modes (i.e., Ky + KII75KTOTAL)-
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In the case of plane strain fracture toughness (Kic), the following
assumptions apply:

1. A small zone of plasticity occurs at the crack tip.
2. Griffith conditions (brittle behavior) predominate.

However, in a given material the elastic stress field is always changed
due to the non-linearity at the crack tip; but always in the same way. There-
fore, fracture will occur at what is termed an apparent stress intensity, Kic.
Critical conditions still apply, however, (Kj——=Kj.) for materials which show
limited ductile behavior,

V.10 SUMMARY

In this section the general forms of the stress and displacement fields
surrounding a crack were considered, An introduction to the form of the stress
intensity factor K for the various crack displacement modes and the formula-
tion of K factors from stress concentration factors was also presented.

Up to now, all crack and fracture criterion have been based on linear
elastic theory; that is, plastic constraint confined to a small area near the
crack tip, With these fundamentals, we can now approach the real life, duc-

tile material situation where plasticity takes place and requires modification
to the elastic solutions.
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VI CRACK TIP PLASTICITY

VI.1 ESTIMATES OF PLASTIC ZONE SIZE

In most real engineering materials, there exists near the crack tip,
under increasing load, a zone of plasticity (plastic zone) which varies in
size and shape for states of stress. The distribution and size of this zone
has been studied by several investigators.(17‘20) Due to the highly complex
analysis required to solve the plasticity equations in Modes I and II, a
solution has only been obtained for Mode III.{(2l) An estimate can be made,
however, for Mode I cracks if it is assumed that the elastic stress field
equations V-1 approach yield conditions as the elastic-plastic boundary is
reached.* Using Octahedral Shear theory, the relative size of the plane
stress and plane strain plastic zone (r)is found to be

;E- = cosz'g (1+3 sinz-g ) (Plane Stress)
y
(VI-1)
;E- = cos2 g [(1 -2 V)2 + 3 sinz-g] (Plane Strain)
y
where the plastic zone radius, ry, is given by
1 5 42
r = = (Plane Stress) (VI-2)
y 2w Oys

and the actual plastic zone diameter is 2ry.

The plane stress equation VI-1 indicates the following:

1. The distance ry is the apparent crack tip location directly ahead of
the actual crack tip and prescribes the elastic-plastic boundary
(plane stress plastic zone radius).

2. The plastic zone is larger than that given for plane strain.

Liu,(zo) in 1961, proposed a model of the plastic zone which is depicted
in Figure 9. Experimental evidence has shown that this model is a good
representation of the zones for plane stress and plane strain. The relative
sizes of the plastic zones are as indicated.

Dugdale(zz) analytically described the shape of the plastic zone on the
surface as "wedge" shaped or strip model, and these types of zones have been
observed experimentally(17s19); others propose a "dumb-bell" shape during
the early stages of deformation. Many feel that the Dugdale equation esti-
mates the plastic zone size more accurately for certain materials than

* This method becomes "exact'" as the material stress-strain curve becomes
linear.

29




g,

CRACK
FRONT

PLANE STRESS\*“‘"

ON SURFACE

q

FIGURE 9 PICTORIAL REPRESENTATION OF THROUGH-THE-THICKNESS PLASTIC
ZONE DEVELOPMENT AS FIRST VISUALIZED BY LIU (Ref. 20)
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that given by equation VI-2. This equation assumes a wedge shaped zone whose
length can be described mathematically as

2r = a [sec W—O-——ljl (VI-3)
y 2@
ys
which in terms of the stress intensity factor is (when r << a)
1 T KI 2
2ry == (2—0— (VI-4)
ys

The reason for these models will be discussed in the next section.
However, what is important is that at the crack tip a plastic zone develops
under increasing stress and affects the stress intensity solution.

vI,2 LIMITATIONS ON PLASTIC ZONE DIMENSIONS

The plastic zone must remain small compared to other dimensions of the
material (i.e., crack length, width), or elastic fracture mechanics is in-
validated.

If equation VI-2 is combined with the stress intensity equation for
Mode I (see eqs. V-25), the plastic zone size can be seen as a function of
the applied gross stress and crack length. (Also see equation VI-3.)

2
o
r = % a = (Vi-5)
y ys

The plastic zone size given by equations VI-5 or VI-3 will be small com-
pared to half-crack length, "a", as long as the gross stress is well below the
material yield strength., This relationship places some limitation on the ratio
of 0/0ys , which was reported in the fifth ASTM Special Committee Report(23)
as

(0}
_O££ < 0.8 (VI-6)

ys
where O ... is the stress on the uncracked section at fracture, Thus, when
the size of plastic zone is a large portion of the uncracked net section,
linear elasticity does not represent the stress field with adequate accuracy.
The relationship of equation VI-6 was determined empirically, and its validity
in the high stress (small crack size) range must be verified by testing ex-
perience. This involves a computation directly from equation VI-2 to insure
that the plastic zone size is small compared to other specimen dimensions.

VI.3 INFLUENCE OF WORK HARDENING ON THE PLASTIC ZONE

Work hardening affects the crack tip plasticity in the following manner:

Large Work Hardening -- Equations VI-1 apply and "dumbell" or circular
zones are formed (see Figure 9 ).

Small Work Hardening -- Concentration of slip ahead of the crack forms
shear bands and the Dugdale(zz) "wedge" model
applies (see Figure 10 and equation VI-4),

Figure 10 shows the shapes of experimentally observed plane stress plastic
zones for several materials of various work hardening coefficients, n, as
summarized by Hahn and Rosenfield(17), Reference 17 contains an excellent
summary of the influence of strain hardening on fracture,
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2024-0 Aluminum
a&s = 15 ksi

n = 0.250

4340 Steel (Annealed)

o = 60 ksi
ys
n = 0.145

1010 Steel (Cold Rolled)

U&S = 105 ksi

n =~ 0.01-0.05

Mild Steel (Annealed)

0&5 = 40 ksi
n ~0

EXPERIMENTALLY OBSERVED SURFACE, PLANE STRESS PLASTIC ZONES(17)



Another illustration of the plane stress plastic zone is shown in
Figure 11. It can be observed that the so-called V-slant fracture surface
will occur due to this type of plastic zone. Slip within the plastic zone
(at 45° to crack tip plane) is one of the causes of this type of fracture.
It will be remembered that the state of plane stress or plane strain also
influences the formation of slant, V-slant, and flat fracture (see Figure 3).

VI.4 THICKNESS EFFECTS ON FRACTURE

To differentiate between the terms thick and thin, the radius of the
plane stress plastic zone (eq. VI-2) can provide a relative measure when com-
pared to material thickness, B, Test results have indicated that the frac-
ture appearance (through the thickness) is related to a normalized plastic
zone size, as shown in Figure 12, This behavior is typical and_indicates
the transition zones as a function of the crack tip parameter, X | The
shape of this curve will depend on many parameters, and the fracture mode
transition on the interplay between material properties, geometry, and force.
However, as a general rule, the cut-offs of 0.2 for plane strain and 1.0 for
plane stress are generally accepted. However, there is one material, beryl-
lium, which does not show a transition from flat to shear.

This brings us to the effect of material thickness (B) on the critical
stress intensity factor, K.. Figure 13 shows these trends for titanium,
steel, and aluminum alloys. The form is similar in many cases to the curve
of Figure 12. For example, the nominal* value of stress intensity for 7075-
Té has a minimum at 36 ksiy/inch for 2 0.8 inch thick material. This limiting
value represents the plane strain fracture toughness, Ki., for 7075-T6. A
mixed mode region occurs for 0.5>B>0.15 inches, and the plane stress region
occurs when B<0.15 inches and K. =85 ksi,/inch. The other curves of Figure
13 show similar trends, some more gradual (Ti-6Al-4V) and others more drastic
(Ti-B120VCA).

There have been several indexes proposed to measure the tendency toward
plane strain or plane stress behavior. In a plate, the plastic zone radius
at the surface is given by the plane stress equation VI-2 or VI-4; and in the
center of the plate by the plane strain equation VI-7, which is 1/(22) or

approximately 1/3 the size of the plane stress zone equation.

5

i
r =
y an/z—(oys

The critical conditions for plane strain and plane stress can be estimated by
comparing the surface plastic zone radius, eq. VI-2, with thickness, or when

K 2
Bmz(ﬁ)
g
ys

plane strain conditions prevail. And when

2
) Plane Strain (VI-7)

*CAUTION--The critical stress intensity values shown in Figure 13 must be
considered as average.
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KIC 2
B<=2 -&——
ys

plane stress conditions predominate,

Relationships such as the above can be useful in setting a limit on
specimen size for determining Kj.. The American Socilety for Testing and
Materials(8) has set a requirement that

K 2
Band a 2 2.5 (-—EE) (V1i-8)

Oys

in order to obtain valid plane strain fracture toughness values, under current
accepted practice, However, since these are empirical estimates, the exact
method of determining Kj. for a particular material is to increase specimen
thickness until critical K values reach a limiting value (see, e.g., 7075-T6,
Figure 13).

VI.5 INCLUSION OF PLASTICITY AND GEOMETRIC CORRECTIONS IN K SOLUTION

It was shown that the radius of plastic zone, ry, affects the material
critical stress intensity factor, Therefore, it must be accounted for in
some manner in the basic K equations V-22, 23, and 24, It may be thought of
! as adding an incremental length to the existing crack. For example, equation
l V-22 becomes

i K, = Aoy a+ ; (ry) (VI-9)

K 2
where the plastic zone radius, ry, is a function of 1,%; from eq. VI-2 or 7,
| and A is the correction for finite geometry.

In a previous section, equations V-25 gave the K solutions for an infinite
panel containing a c?nsrcl crack of half-length "a". For centrally cracked
finite panels, Irwin “ suggested the following equation for stress intensity
from the work of Westergaard, including geometric correction, to account for
finite specimen widths, (W) and crack geometry.

KI = 0y W tan LWI (VI-10)

This is the so-called "Irwin Tangent Formula" where the factor W tan
includes the geometric correction factor (A) discussed previously. The form
of equation V-25 accounting both for plasticity and finite geometry using the
"Irwin Tangent Formula" becomes

kK = 0V tan (1 + Fle ) (VI-11)

where the plastic zone size is determined from equations VI-2,3, or 7 depending
on stress state and expected zone shape,
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The normal form of the opening mode stress intensity, including finite width
correction is usually written as

~
n

1 oma )C(Zw_a)*

or " o f(\h—wza)ec

for centrally cracked panels. It has been determined that the "Irwin Tangent
Correction" factor has an estimated accuracy of *5% for crack length to panel
width ratios (23)**1ess than 0.4, Other correction factors have been developed
for the center¥ crack geometry(26'28). The expression in use today is by Isida,
which has an accuracy of +0.5% for 228 <0,7. The forms of the various correc-
tion factors which account for relative size of specimen to crack dimensions,
will be discussed fully in Section VII.6.

(Vi-12)

Vi.6 SUMMARY

The plastic zone at the crack tip has been shown to affect the state of

stress, fracture mode appearance, and most importantly, critical stress in-
tensity factor, It is itself, in turn, a function of thickness and material

properties. Estimates can be made of the plastic zone size and result in an
apparent crack length which can be used to determine stress intensities for

semi-ductile fracture. The complete form of stress intensity equation will

include corrections for plate/crack geometry and for plastic zone,

In the following section, the stress intensity solutions will be pre-
sented for various crack loading situations,

**Also referred to as "crack aspect ratio",

% Plastic zone correction not included.
i1
< PANEL WIDTH

OTAL CRACK LENGTH>
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VII BASIC STRESS INTENSITY FACTORS

This section presents solutions of the basic stress intensity factor K
for crack geometries and loading modes most encountered in aircraft applica-
tions. These expressions have been abstracted from Reference 15 which con-
tains an excellent review of available K solutions. The original sources
are also given in Reference 15. Using superposition principles, it will be
possible to combine many of the results. In most cases the opening, Mode I,
tensile stress intensity will be emphasized since this is the most common
case for aircraft application.

NOTE: ALL K EQUATIONS IN THIS SECTION ARE BASED ON ELASTIC SOLUTIONS AND
ARE FOR INFINITE AND SEMI-INFINITE GEOMETRY (i.e., without
geometric (finite width) corrections).*

VII.1 UNIFORM LOADING

Uniform, Tensile Stress (Normal to Crack)

t 1

K;y= o Jra (VII-1)

t with K. =K. =0
/ i
/ v

(Mode 11)
KH = 7./7a (Vii-1a)
with KI = KIII =0

*Except Where Noted.
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Uniform, Transverse Shear Stress (Parallel to Crack)

(Mode 111)

[
KIH = T./7ma (VII-1B)
Eti with K. =K., =0
I 11
.

Uniform, Twisting Moments

(Although the K solutions are consistent
F with KI’ K the standard notation is

II
Kshear’ Kbending for flexure.)

F = Pure Twisting Moment, (per unit length)
:Z Ta
P omilnd = " shear E2
2a
Eith Kbending = 0
.Ji
F

Uniform, Shear

fe— ) —1

F
= Uniform Shear (per unit length)

T F
NOTE: Results are independent of F!
.FF
E
8 F VTa
E‘i ; Kshear Bz (VII-3)
: - '
i i
v
F

ith =
e K‘t)end:lng
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Uniform, Bending

M
<[//—~\ M = Uniform Bending Moment

& NOTE: Results are independent of M¥
(Equilibrium Moments)
M*

M*
: =0 M VTa  yr1.4)
2 Kbending B2
/
3
M
with K = Q
shear
Uniform Tensile Stress - Crack Arrays
(Mode 1)

P = Force per unit thickness

KI @‘ points A=

i.n-‘"'—C
o./4b s 7b

e
£ 6= Te Te =\ +
e 5 I cos =— [ sin =— + sin

OB, Setny

!P L
P —
E‘:Lﬂ Je
! 2b 2b 2b

1 .
< / Tic (VII-5)
P /sin B

b

—~
E.:gﬂ

e e e Tc
/b sin 7% cos 7= (sin 2 + sin Zb)

ith -
e Kip=0

Uniform, In Plane Tensile Stress - Inclined Crack

| (Mode 1)
- | —a
- 5 . K, = 0 sin? BJ/Ta
T e N T e (VII-6)
B (Mode 1I1)
- —
KII = O sin B cos B/Ta
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Uniform Tensile Stress - Corner Crack

A AT )

(Mode 1)

KI = Mk g, /mTa (V11i-7)

Section AeA

0
50° My
0 0.705
0.2 0.650
0.4 0.625
0.5 0.620
0.6 0.625
0.8 0.650
1.0 0.705

where values of the elastic magnification factor Mk for values of angular

orientation Tgpo  are as above (Reference 25, see also Section IX).
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In-Plane Bending

(Mode 1)
Ta
Ky = 6M*2
BW
(VII-8)
g
= T
or KI NOM /Ta
M = bending moment
oﬁOM = nominal stress
‘th = = O
Bt Fepr = By
Axial Tension (Double Crack)
_ (Mode I)
- I
— == K =0/Ta (VII-9)
- ﬂ}l — = K =
with KII 111 0
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r

STRESS INTENSITY FACTOR COEFFICIENT, £ (

Uniaxial or Biaxial Stressed - Cracks at Holes

(Mode 1)
= : a‘
ce—| @Il T —_— KI = 0,/7a {(;) (vii-10)
N
w4 L ! 1 where § (%) is given below
’ with Ry = 0
200
UNIAXIAL STRESS
TWO CRACKS 1.0
S .
].00d : 7 i '+
ONE CRACK .707
EQUAL BIAXIAL STRESS 7" E >
0 ————— —————f =
0 1 2 3 4 5 6 7 8 9 10

RATIO OF CRACK LENGTH TO HOLE RADIUS, %

St



Uniform Stresses on Part of Crack Surface

{(Mode 1)

0 = Uniform stress on one surface

T = Uniform Shear on crack faces

g a -1 ¢
KI @A= - /” [sin =

(Vii-11)

k=3 =4V (Plane Strain)

k=3 =V  (Plane Stress)
1 +vVv

VII.2 CONCENTRATED FORCES

Concentrated Force (F), on a Crack Surface
with Arbitrary Inclination

(Mode 1)

F = Force per unit thickness

(VII-12)

s k=1
11 = 27 /za \K+H

1 Q /a+b
~— — 2 Tra a-b

k=3 -4y (Plane Strain)

(Plane Stress)
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